

Co-Optima: Gasoline Direct-Injection Sprays

Marco Arienti, <u>Lyle M. Pickett</u>, and Christopher F. Powell, Scott A. Skeen

12 June 2019, 2:00 PM Project ID: FT074

Overview

Projects

Abbrev.	Description
OI	Optical Imaging (Pickett & Skeen)
XD	X-Ray Diagnostics (Powell)
SM	Simulation/Modeling (Arienti)

Barriers*

- Need improved combustion modes & understanding of fuel effects thereon
- Understanding direct-injection sprays as a key pathway towards high-efficiency engines (multimode and lean SI)
- CFD model improvement for engine design/optimization

Budget

Project	Lab	FY18 [\$k]	FY19 [\$k]
OI	Sandia	\$250	\$275
XD	Argonne	\$150	\$155
SM	Sandia	\$190	\$150

Timeline

Project	Start	End
OI	10/2015	9/2019
XD	10/2015	9/2019
SM	10/2017	9/2019

^{*}from https://www.energy.gov/sites/prod/files/2018/03/f49/ACEC_TT_Roadmap_2018.pdf & https://www.energy.gov/eere/vehicles/advanced-combustion-strategies

Relevance of fuel injection to advanced multimode combustion

Spray affects...

- liquid penetration, mixture preparation, and burn rate
- propensity to knock or autoignite in standard SI or multimode

Wall wetting or liquid in the bulk charge

- creates fuel-rich, PM-forming combustion
- is not completely explained by fuel physical properties (distillation curve) or soot metrics (PMI index)

Conditions vary widely, significantly changing spray

With intake T=333K, P=1.0bar, CR=12

CAD TDC	Temperature	Pressure	Density
intake open	333 K	1.0 bar	1.1 kg/m ³
-52	511 K	5.2 bar	3.6 kg/m ³
-19	711 K	18.7 bar	9.2 kg/m ³

Approach

Quantitative fuel concentration by spray tomography

Use same fuels and injector
(ECN Spray G)
8-hole, stepped
80° total angle
full geometry provided

geometry from xray tomography, Argonne

SM = Simulation
/ modeling
(Arienti, SNL)

Research using Tier 3-selected fuels

RON

100

0

121

76

106

105

109

BP [°C]

99.5

98

111

63.4

107.9

101.4

78.5

Fuels used throughout CoOptima program, including Sandia optical engine

Refinery Stock

Surrogate Blends

												_
	Olefins	Cyclo- alkanes	Alkyl- ate	E30	Arom- atic	Iso- butanol	Diisobu tylene	BOB4	Iso- Octane	E20	B20	
RON	98.2	97.8	98	97.9	98.1	98.1	98.3	90.3	100			
MON	88	86.9	96.7	87.1	87.6	88	88.5	84.7	100			Vol. %
						41.7	44.2	55	100	80	80	iso-octane
T10 [°C]	77	56	93	61	59	11.4	12.1	15	0	0	0	n-heptane
T50 [°C]	104	87	100	74	108	19.0	20.1	25	0	0	0	toluene
T90 [°C]	136	143	106	155	158	3.8	4.0	5	0	0	0	1-hexene
TF [°C]	198	204	161	204	204	0	19.6	0	0	0	0	diisobutylene
IsoButanol [Vol. %]	0	0	0	0	0	24.1	0	0	0	0	20	isobutanol
Ethanol [Vol. %]	0	0	0	30	0	0	0	0	0	20	0	ethanol
Oxygenates [Vol. %]	0	0	0	30.6	0	24.1	0	0	0	20	20	
Aromatics [Vol. %]	13.4	33.2	0	8.1	30.8	19	20.1	25	0	0	0	
Olefins [Vol. %]	26.5	1.6	0	5	4.2	3.8	4	5	0	0	0	
Paraffins [Vol. %]	56.4	40.6	100	57.1	65	53.1	56.3	70	100	80	80	
Cycloalkanes [Vol. %]	2.9	24.2	0	7	8	0	0	0	0	0	0	
Particulate Matter Index	1.00	1.54	0.22	1.28	1.80	0.40	0.47	0.48	0.19			
Net Heat of Combustion [MJ/kg]	44.1	43.2	44.5	38.2	43	40.6	43.5	43.3	44.3			
Stoichiometric Air-Fuel Ratio	14.8	14.5	15.1	12.8	14.5	13.8	14.7	14.6	15			
Heat of Vaporization [kJ/kg]	-	-	309	536	363	416	330	344	306			

BOB4 surrogate for base gasoline was developed by NREL, with full properties/tests available at https://fuelsdb.nrel.gov/fmi/webd/FuelEngineCoOptimization

Milestones

Mo/Yr	Proj.	Description of Milestone or Go/No-Go Decision	Status
Jan. '19	OI	Quantify liquid plume penetration in 3D for Tier-3 selected RON98 fuels (>10 fuels) over a range of intake conditions	√
Mar. '19	OI	Demonstrate feasibility for mixed-mode ignition/flame imaging	1
Aug. '19	OI	Compare ignition characteristics for Tier-3 RON98 fuels	Pending
Mar. '19	XD	Perform measurements of the near-nozzle fuel distribution resulting from iso-octane/ethanol/butanol blends under flash-boiling and non-flashing conditions	√
Jul. '19	XD	Measure near-nozzle droplet sizing using USAXS	Pending
Feb. '19	SM	Simulate ECN Spray G mixing/breakup for two fuel blends	
Jun. '19	SM	Implement improved relaxation model for flash-boiling conditions	Pending

OI = Optical Imaging (Pickett, SNL)

Developed diagnostic for 3D liquid volume fraction using high-throughput chamber

High-speed extinction tomography

- Provides DOWNSTREAM
 measurement of plume direction, a
 significant metric for wetting, mixing
 and CFD development
- Offers significant advantages compared to planar laser diagnostics
- Shows spatial position and timing of liquid vaporization

New flow spray facility offers

- Extensive optical access (>100 mm)
- Range of conditions to mimic intake or late-injection conditions, covering standard SI and multimode
- Throughput to generate massive ensemble-average datasets

Light distillate components encourage spray collapse

Even using heated fuel and limited injection (10 mg), there is substantial liquid penetration

- reference engine: bore/stroke 86/95 mm
- E30 has both high BP and high latent HoV
 Small levels of light distillate are important
- Collapsed sprays do not mix well and likely impinge upon piston
- Olefinic blend affected with <20% light dist.

Impact on fuel selection:

- Light distillate fraction needs consideration, in concert with spray strategy
- Wide-angle injectors and short, multiple injections may be needed

Z-Y plane LVF

Flash-boiling conditions do not necessarily undergo immediate evaporation

Liquid boundary based upon "projected liquid volume" along a line of sight

OI = Optical Imaging (Pickett, SNL)

Imaging reveals both ignition and flame propagation at multimode conditions

Late-compression gasoline injection

- highly stratified mixture with no "background" air/fuel mixture
- autoignition of "first-injected" fuel in wake of head vortex
- apparent flame propagation through much of the charge
- autoignition sites noticeable as well
- >20 m/s convection of flame
- non-sooting combustion

20 -

30 -

20

30

AD

50

60

Schlieren imaging (side view)

XD = X-Ray Diagnostics (Powell, ANL)

Measurements of the near-nozzle fuel distribution in flash-boiling sprays

2D slices obtained using x-ray tomography showing the iso-octane density under non-vaporizing and flash-boiling conditions

- Liquid fuel density has been quantified at 1 2 mm downstream of the injector for three different fuel blends
- As expected, spray plumes are more diffuse under flash-boiling cond's
- Simulations (submitted at ECN6 workshop) underpredicted the measured dispersion, suggesting a need for modeling research at these conditions

Fuel effect on flash-boiling Spray G2

- Near-nozzle measurements show stronger plume growth for ethanol mixture, particularly for flash-boiling conditions
- Measured cross-sectional mass (TIM) decreases for ethanol

SM = Simulation / modeling (Arienti, SNL)

CLSVOF simulations comparing BOB4 to x-ray experiment

Boiling		Volume % for
Point [°C]	Compound	Surrogate BOB4
99.0	iso-octane	55
98.4	n-heptane	15
110.6	toluene	25
63.0	1-hexene	5

Spray G operating conditions (6 bar)

Profile from tangential average through plume center

 Spray G simulation with multiphase CLSVOF code for BOB4, mixture properties created using REFPROP library

Snapshot of partially-filled Spray G chamber during start of injection

Improving the homogenous relaxation model

$$\frac{Dx}{Dt} = -\frac{x - \overline{x}}{\Theta_{HRM}}$$

Smaller Θ_{HRM} means faster relaxation to equilibrium

New bubble submodel:

Pressure-temperature diagram at saturation

Single-hole simulations at flash-boiling conditions

Consider bubble radius, position, temperature

New bubble submodel:

$$Jac = \frac{\rho_{vap}}{\rho_{liq}} \frac{c_{p,liq} \Delta T_0}{h_{vap}}$$

$$LOG10(\Theta_{HRM}[s])$$

NEW: $\Theta_{HRM}(Jac, r_b(0))$

New model would have faster relaxation, faster vapor growth

$$\frac{Dx}{Dt} = -\frac{x - \overline{x}}{\Theta_{HRM}}$$

$$\psi = \left| \frac{P_{sat} - P}{P_{crit} - P_{sat}} \right|$$

$$\phi_0 = \alpha \frac{n_{vap}}{n_{vap} + n_{N2}}$$

New bubble submodel:

Responses to Previous Year's Reviewers' Comments

General, Page 5-39: "The reviewer was pleased to see a focus on sprays, stated that there have been questions on how biofuels and other non-conventional fuels behave in sprays for decades. Once we understand the spray better, more effort can be put into the combustion systems."

OI	 Page 5-39: "Many milestones were pending" but the new spray chamber capability is "good progress" because it is needed to be relevant to today's high-power density engines" The support is appreciated particularly because this project has made a substantial investment into a chamber for higher quality spray diagnostics for the future.
XD	Page 5-41: "Using these diagnostics to dive into how these new fuel behave in sprays and what that does to mixture formation is fundamental and essential to the co-development of fuels and engines" • The support is appreciated. We have tried to design this year's task with this goal in mind.
SM	No reviewer comments; this project was a new start in FY18.

Collaboration and Coordination with Other Institutions

OI	 Sandia: using same fuel injection equipment as light-duty engine (Sjoberg) Engine Combustion Network: data is being shared with ECN, several modeling groups are expected to contribute simulations for comparison with the measurements
XD	 Sandia: coordination with Pickett on measurement conditions Engine Combustion Network: data is being shared with ECN, several modeling groups are expected to contribute simulations for comparison with the measurements
SM	 Engine Combustion Network: multiple investigators (~15) perform experiments and simulate the Spray G internal and external conditions used in these studies Prof. Mark Sussman, Florida State Univ.: Development & testing of numerical methods for fuel inj. applications Center for Computational Sciences & Engineering, Berkeley Lab: Development of library for hierarchical adaptive mesh refinement in high-performance computing

Remaining Challenges and Barriers

OI	•	Liquid wall impingement is difficult to characterize but is closely linked to soot and PM emissions. Tailoring fuel delivery for multimode ignition/combustion requires precise control to maintain controlled flame while not forming PM.
XD	•	Current measurements using x-ray radiography cannot resolve between liquid fuel and fuel vapor. X-ray fluorescence measurements are more challenging, but will allow us to quantify the liquid and vapor separately.
SM	•	A major barrier is the high computational cost of a detailed fuel injection simulation, which limits how many operation points can be examined. The development of a data-driven process capable of integrating spray details in combustion simulations at the engine scale remains a substantial challenge.

Proposed Future Research

OI	 Quantify liquid penetration, plume direction and plume shape Use high-pressure injection hardware specifically designed for short and multiple injection High-speed long-distance microscopy for dribble at end of injection Perform stratified-ignition experiments at relevant T and P
XD	 Droplet sizing using USAXS Needle motion at flash-boiling conditions Add'l measurements of flash-boiling GDI sprays using x-ray fluorescence
SM	 Simulation of liquid dribble at end of injection, with resulting ignition, combustion and soot formation Implementation of more detailed computational models for cavitation and flash-boiling, in relation to the operation mode of modern injectors.

Summary

OI	 Showed major variation in spray mixing for leading-candidate fuels with a strong relationship on light distillate fraction (missing from current merit function) Simultaneous ignition and flame propagation shown for mixed-mode conditions Significant new diagnostic advancements for 3D plume direction
XD	 Near-nozzle fuel distributions have been measured for three fuel blends, several fuel temperatures, providing fundamental information about plume interaction and growth that is key for prediction of spray collapse
SM	New homogenous relaxation model proposed/evaluated, showing potential to predict faster relaxation (more vaporization) at flash-boiling conditions

Technical Back-Up Slides

Computational Approach: The Multiphase Code CLSVOF

- Sharp-interface discretization of multi-phase Navier-Stokes eqns.
 - √ Compressible effects
 - ✓ Non-conformal, moving wall boundaries

- √ Adaptive mesh refinement
- √ Flexible EoS implementation

Increased scalability up to 900M cells (10,000 MPI processes on SNL and ANL platforms) with hybrid MPI / Open MP configuration.